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ABSTRACT: De novo DNA synthesis is in need of new ideas for
increasing production rate and reducing cost. DNA reuse in com-
binatorial library construction is one such idea. Here, we describe
an algorithm for planning multistage assembly of DNA libraries
with shared intermediates that greedily attempts to maximize DNA
reuse, and show both theoretically and empirically that it runs in
linear time. We compare solution quality and algorithmic perfor-
mance to the best results reported for computing DNA assembly
graphs, finding that our algorithm achieves solutions of equivalent
quality but with dramatically shorter running times and sub-
stantially improved scalability. We also show that the related
computational problem bounded-depth min-cost string production (BDMSP), which captures DNA library assembly operations
with a simplified cost model, is NP-hard and APX-hard by reduction from vertex cover. The algorithm presented here provides
solutions of near-minimal stages and thanks to almost instantaneous planning of DNA libraries it can be used as a metric of
″manufacturability″ to guide DNA library design. Rapid planning remains applicable even for DNA library sizes vastly exceeding
today’s biochemical assembly methods, future-proofing our method.
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The ongoing next-generation DNA sequencing revolution
has been driven during the past decade by the advent

of several disruptive technologies, which have converged to
both reduce the cost1 and increase the throughput2 of DNA
sequencing by a factor of 105 compared to traditional Sanger
sequencing. In contrast, current technology for de novo DNA
synthesis is trailing far behind sequencing by a factor of 106 per
base in terms of cost and by an even larger factor in terms of
throughput.3 It is generally acknowledged that new disruptive
technologies for DNA processing are needed for advancing the
development of biotechnology and biomedical research.
In concert with entirely de novo synthesis, a swathe of alter-

native DNA assembly methods are being introduced4−6 that
concatenate parts from hundreds of base pairs in length,
through gene fusions, to synthetic biological devices built from
catalogued parts, up to megabase fragments and entire
chromosomes.
Both combinatorial DNA assembly and de novo DNA syn-

thesis can be improved considerably (e.g., made cheaper, ameliorate
error rates, etc.) by maximizing DNA reuseidentifying shared
parts and utilizing them during construction. Most DNA
generally needed in biological and biomedical research, and in
synthetic biology and systems biology in particular, are
extensions, variations, and combinations of existing DNA.
This provides ample opportunities for DNA reuse. De novo
synthesis relies on synthetic oligos that are inherently error
prone, and therefore, reusing existing error-free DNA in con-
structing new DNA provides an inherent advantage. Moreover,
even in applications that require completely new DNA, when

adapting codon usage,7−9 for example, an exploratory library of
variants is typically needed.10 The production of these variants,
once an error-free prototypical instance of the DNA molecule is
isolated or synthesized, includes opportunities for DNA reuse
almost by definition.
Rigid DNA production methods that follow a fixed

production plan are inherently prevented from incorporating
DNA reuse. Achieving reuse requires sophisticated DNA
construction optimization algorithms, as well as flexible
automated production systems11,12 that can take advantage of
construction plans produced by such algorithms.
In this paper, we show how combinatorial DNA libraries

(graphically represented in Figure 1) can be assembled algo-
rithmically in an efficient manner from pre-existing and newly
synthesized biological parts. This is achieved by recognizing
that consecutive combinations of input parts appear multiple
times within the output molecules (targets). Ordering the
necessary assembly steps into stages, in which a judicious
selection of intermediates are assembled earlier, facilitates reuse
of assembled parts, leading to an overall reduction in the
number of biochemical operations required to assemble the
library. A fast heuristic for library planning and DNA reuse,
such as the algorithm we propose in this paper, is an essential
component in the algorithmic arsenal of Synthetic Biology.

Special Issue: IWBDA 2013

Received: October 8, 2013
Published: February 20, 2014

Research Article

pubs.acs.org/synthbio

© 2014 American Chemical Society 529 dx.doi.org/10.1021/sb400161v | ACS Synth. Biol. 2014, 3, 529−542

pubs.acs.org/synthbio


This is so due to the fact that, as DNA synthesis becomes
cheaper, very large combinatorial DNA libraries will become
more prevalent and thus efficient tools for handling these ever
increasing DNA libraries are needed.
A scenario where large combinatorial DNA libraries are

needed include extant Synthetic Biology approaches for the
efficient production of fine chemicals or other commodity
products (e.g., antibiotics) that require the manipulation and
fine-tuning of various enzymes and their coordination into a set
of one or more synthetic pathway. The engineering of the latter
must be done in a way that preserves, as close as possible, the
physiological viability of host cellular factories. A key deter-
minant of viability and efficient production is the concentration
the various enzymes adopt in the engineered pathways. In turn,
these concentrations can be controlled by, for example,
modifying ribosome binding sites, promoters’ strengths,
degradation tags, etc. Combinatorial DNA libraries capturing
a large variants set of a synthetic pathway are but one example
of the need for efficient planning algorithms for synthetic DNA
library assembly.
A DNA library assembly task includes a set of input mole-

cules and a set of output molecules (targets) and assumes a
binary part concatenation operation that can select two parts
within existing (input or intermediate) molecules to produce
their concatenation. An assembly plan that produces the out-
puts from the inputs can be viewed as a graph representing the
binary part concatenation operations leading to the set of
targets from the set of inputs through a number of inter-
mediates. Figure 2 visualizes three possible plans for con-
structing a simple library composed of four targets. The quality

of a plan can be categorized by the pair of integers (stages,
steps), which allows to compare the outputs of assembly
planning algorithms. A plan is considered to be better if it has
fewer stages and fewer steps. There may be a trade-off between
stages and steps; however, whether a suboptimal number of
stages with significantly fewer steps is preferable or not is a
technology-dependent manufacturing decision.
More formally, we will refer to strings over a given fixed finite

alphabet (i.e., of nucleotides). The part concatenation opera-
tion applied to a set of strings X consists of selecting two strings
A and B from X, selecting a part (consecutive substring) A′ of A
and a part B′ of B and adding the string A′ followed by B′,
denoted A′B′ back to X.
An S-T library assembly problem is to produce the set of target

strings T using a finite number of applications of the part
concatenation operation on S.
We note that the part concatenation operation is realizable in

most cases using standard biochemistry. Part selection can be
achieved via PCR amplification. Concatenation can be realized
using various binary assembly protocols.4 The cost of a solu-
tion is defined by the number of concatenation operations. The
depth of a solution is defined as the minimum number of
parallel stages needed, where a parallel stage is a set of con-
catenation operations that can be performed in parallel since
they do not depend on each other. Equivalently, the depth of a
solution is the maximum number of concatenation steps on a
directed path from a source string to a target string. We also
consider the problem of finding a solution of depth at most d
and minimum cost and call this problem bounded-depth min-cost
string production (BDMSP).

Figure 1. Composition of a DNA library with 36 targets, stacked to show relative lengths and the distribution of the parts; different colors represent
reusable parts from different provenances. Note that some successions of parts are shared between several targets. Assembly graphs for this library, of
the kind shown in Figure 2, can be found in Figure 4.

Figure 2. Graphs of three alternative valid assembly plans for set of four sequences {acde, abde, ade, abe}. Primitive parts are shown in blue,
intermediate composites in red, and targets in green. From the top downward, each step is represented by a black dot concatenating two parts from
an earlier stage into a new intermediate or target part. The set of vertically aligned steps forms a stage. The thicker line from a part to a dot/step
indicates the left component of the concatenation.
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The present state-of-the-art heuristic for BDMSP is the
multiple goal-part assembly algorithm,13 which iteratively
assembles individual targets using the minimum number of
stages, producing a high quality library assembly graphs using
three techniques: (1) making accumulated subgraphs available
to subsequent targets at no cost, (2) biasing subgraph choice
based on precomputed counts of all possible intermediates,
and (3) permitting the depth of any target tree to grow up to
the global minimum depth (‘slack’). The multiple goal-part
assembly algorithm was shown analytically to have a runtime
complexity O(k2nmax

3), where k is the number of targets and
nmax the number of component parts (n) in the largest target; a
result supported by small scale empirical evidence.
To validate their algorithm, the authors use two real-world

libraries and one small artificially generated one. They showed
that the algorithm had lower costs, that is, it used far fewer
steps, than the best solutions produced by random search. Also,
that at least for the small (k = 5, nmax = 5) artificial library, the
optimal solution, as determined by exhaustive search, could be
found.
Problem Solved? It would be desirable, for example, in

CAD software that enables synthetic biologists to design
libraries of DNA-based devices in a combinatorial manner, to

have an accurate measure of the optimal number of biochemical
operations required to assemble a given library. An integrated
decision-support mechanism leveraging that measure could
guide the researcher in making the most effective use of limited
procurement and analytical resources. Knowing the value of the
near optimal stages and steps objective function of solution
quality would be an effective means by which to benchmark and
differentiate algorithms addressing this problem.
When assembly steps are restricted to binary concatenations,

the minimum number of stages can be calculated13 as
ceil(log2(nmax)). Determining the minimum number of steps is
more difficult. In what amounts to solving the problem, the
minimum number of steps possible could be determined by
exhaustively enumerating all possible assembly plans, but for
even modestly sized libraries this is an intractable task: for just a
single target the number of possible assembly graphs is the
Catalan number:13 Cn = (2n)!/(n+1)!n!, which grows very
rapidly with target length; e.g., C[1..5] = (1, 12, 360, 20160,
1814400). Furthermore, we show here that the bounded
multistage DNA library assembly problem (BDMSP) is in fact
NP-hard14 and APX-hard,15 unless P = NP, indicating that to
determine the minimum number of steps for minimal stages,
and even to approximate it up to a constant error, requires a

Listing 1. Pseudo-code for new library assembly algorithm.
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superpolynomial number of operations. In these circumstances,
robust (fast and scalable) assembly algorithms that do not
sacrifice solution quality for performance are required.

■ RESULTS AND DISCUSSION
Computational Hardness of BDMSP. A minimization

problem Π is said to be APX-hard if there is some constant
δ < 1 such that achieving an approximation ratio of δ on Π is
NP-hard. In particular, it is known that minimum vertex cover
(finding the smallest set of vertices that touches every edge in a
graph) is APX-hard, and this holds even on graphs of degree at
most 3.
Theorem: BDMSP is NP-hard and APX-hard. Furthermore,

this holds even when S is composed only of single characters and
d = 2, and there is a total order among characters such that in every
string of T this order is respected.
Proof: By a reduction from vertex cover (VC). Full details

are provided in Appendix I.
The theorem above applies to bounded-depth min-cost

string production (BDMSP), whereas the problem addressed
with our new algorithm is that of min-cost string production
(MSP) with no depth restriction. We address this closely
related problem as it lends itself to a simple and experimentally
efficient heuristic. It would be desirable to determine whether
MSP is NP-hard as well, but our current work does not answer
this question.

New Greedy Algorithm for DNA Library Assembly.We
present a new algorithm that directly addresses whole library
assembly by operating, at each stage, on all potential binary
concatenations without a priori depth constraints. The
algorithm assembles all targets simultaneously from their indi-
vidual parts, akin to the visualization of an assembly graph (as
can be seen in Figures 2 and 4, and Figure 12B in Appendix I).
The central idea is recognizing that maximal reuse of an inter-
mediate part can result in fewer steps (though not necessarily
stages) by removing the need for additional steps to reach a
given target (Figure 2B and C). This is achieved by greedily
concatenating the most frequently occurring pairs of adjacent
parts, in the hope of producing only those members of the
smallest intermediate parts set. It is well-known that greedy
algorithms, applying locally optimal choices at each stage, can
quickly obtain solutions that approximate the global optimum,
even for some hard problems.
Listing 1 gives detailed pseudocode for the general algorithm.

A Python implementation can be found in the Supporting
Information. Listing 2 in Methods uses a higher-level, recursive
pseudocode for runtime complexity analysis.
Starting from a data structure where each library target is

decomposed into a sequence of available unitary parts, the
algorithm repeatedlyin analogy to independent steps within
an assembly stageconcatenates a subset of the remaining
pairs of adjacent parts within the sequences, until no pairs

Figure 3. Step-by-step walkthrough of a run with the example library {ABE, ABDE, ACDE, ADE} from Figure 2. While targets remain to be
assembled, each iteration progresses in five phases: (1) occurrences of every pair are counted; (2) pairs are mapped to containing triplets and vice
versa; (3) a list of pair-count tuples is shuffled (blue wave) and stably sorted by count descending (purple arrow); (4) for each yet-to-be-excluded
pair, choose pair to be a step (green rows) then exclude other pairs (red rows) sharing the same containing triplets using mappings from the second
phase; finally (5) concatenate all instances of each step-pair. Note that in this example, no triplets exist in the second iteration, as the structure of the
library after the first iteration is exactly the set of pairs that will comprise the steps of this final stage.
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remain, meaning every target has been successfully reas-
sembled. The sets of pairs concatenated at each stage of the
execution thereby constitute a viable assembly plan.
Three heuristics operate to influence the choice of assembly

steps, for each stage:

(1) Each class of pair is treated as being mutually exclusive
to another if at least one instance of each overlaps: shares
a right or left part respectively such as B in the pairs AB
and BC, of the trio ABC. This makes it possible to safely
concatenate all instances of any given pair, because
instances of overlapping pairs will be prevented from
being simultaneously assembled in the same stage. For
greedy ef f iciency, all nonexcluded pairs are concatenated.

(2) For ef f icacy, the choice of which pairs to concatenate is
determined by the relative number of times each pair
occurs within the nascent library data structure. Pairs are
sorted by count, which establishes a ranking, but are then
processed individually and either chosen as a step or
excluded. The first few pairs to be processed are much
more likely to be chosen because they are less likely to
have been excluded by a previous pair. Those with lower
or equal frequencies, assessed later, are likely to have
already been excluded and cannot therefore be chosen at
that stage.

(3) To enable the broadest exploration of the space of
assembly plans obtainable under the previous heuristics,
we introduce an element of nondeterminism to every
stage. A random shuffle followed by a stable sort serves
to reorder pairs with the same count while retaining the
ranking, such that the most frequently occurring pairs
are still selected and will exclude less frequent ones,
dependent only the composition of targets and the
library’s amenability to assembly by binary concatena-
tion, as captured by pair-counting. This combats the
potential for the introduction of bias toward the first
encountered pairs, as due to the counting operation
necessarily iterating over and within the targets, the
ordering of the targets and the position of the pairs along
them could, depending on implementation, determine
the order in which the pair-counts are stored and the
pairs presented for selection and mutual exclusion.

When combined, these heuristics serve to prioritise the
production and maximize the reuse of intermediate parts with
the highest potential for reuse throughout the library. The most
frequent pairs will always exist within the most frequent trios
and so on. This results in assembly plans with almost as few as
possible stages and steps. For example, in assembling the single
target ABCABC given the parts {A, B, C}, the algorithm will
always produce two instances of either AB or BC in the first
stage. In the second it must produce two instances of ABC in
preference to only one of CAB or BCA. ABCABC is the only
possible concatenation product left, and so, the algorithm
terminates having planned the target assembly in the minimum
of three stages and three steps. Figure 3 gives another worked
example, yielding the solution in Figure 2C.
Computational Validation. In evaluating assembly algo-

rithm efficacy, we use (stages, steps) as the biobjective function
for quantitatively comparing the quality of assembly plans
introduced earlier. For multiple runs, we take the mode (or
modal average), as it is the most appropriate statistic for the
categorical (stages, steps) tuple. We use the ″best″ and ″worst″
values from multiple runs to indicate the range of solutions

found by an algorithm on a particular data set. Efficiency is
measured as the mean running time in seconds that a library
assembly algorithm requires to compute a valid assembly
planintended to facilitate simple calculation of potential
running times for multiple runs and the number of runs that are
achievable in a given time period.
In what follows, we have called our new algorithm Anew and

the multiple goal-part assembly algorithm Amgp. Results pre-
viously obtained for Amgp might have provided the most direct
means by which to assess whether Anew is an improvement over
the state-of-the-art, but only a handful of steps values could be
extracted from the published figures.13 We coded A1 to be a
faithful implementation of Amgp, following the available
pseudocode and literature, which enabled us to gather statistically
significant samples of efficacy measurements, and conduct a fair
comparison of efficiency by running both the new and current
state-of-the-art algorithm on the same technology stack.
When implementing A1, we discovered that while Amgp

appears to be deterministicconsistently returning the same
solution for the same list of targets (an assumption perpetuated
by the solitary data points in the original publication)
that perceived determinism only holds for a given ordering of
the target lista consequence of always preferring the first of
two equal cost subgraphsparticularly when previous
iterations have reduced the cost of already used subgraphs to
zero. By shuffling the targets list between repeated runs of A1
on the same set of targets, we were able to get a broader
indication of the solution space explored by Amgp and obtain
distributions of solutions that enabled the more nuanced
comparison of Anew and Amgp efficacies for any given library.
By design Amgp, and therefore A1, do not return solutions

with greater than minimal stages, whereas Anew has no means of
controlling the number of stages in an assembly, as our results
demonstrate. The depth of an Anew assembly graph is a function
of the target compositions, the heuristics employed and the
element of chance. The number of stages in an A1 produced
assembly graph can be increased through the extra_slack
parameter, which we use to enable a steps-only comparison of
A1 and Anew with equal stages, when Anew can only yield plans
with nonminimal stages, in Figure 6.
For an approximation of a random search baseline algorithm,

using Anew, we can simply randomize the choice of steps by
disabling the stable sort that succeeds the per-stage shuffle
(step 3 in Figure 3). We call this algorithm Anew

rand and use it
to demonstrate the benefits of prioritizing more common pairs,
when greedily applied, over random choice (this is analogous to
how the authors of Amgp assessed improvement over random
pair concatenation, in the absence of another library assembly
algorithm to compare to).
We evaluated Anew, against the other algorithms described

above, using real-world combinatorial DNA libraries and
samples of tangentially related targets from biological parts/
device repositories. The identity and characteristics of these
benchmarks are summarized in Table 3 of the Methods, Data
Set Curation subsection.

Efficacy Evaluation. The ranking heuristic of Anew
prioritizes pairs of parts (potential concatenation steps in the
current stage) that occur most frequently over all library targets,
including pairs within the same target. The Fisher−Yates
shuffle16 used in our implementation of Anew performs an
unbiased randomization of the order in which pairs are considered
as potential concatenation steps, so that the sort is absolutely
necessary to obtain the required rank ordering. To demonstrate
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the importance of this to Anew obtaining good quality assembly
plans, we compared the assembly graphs generated by Anew and
Anew

rand in which the rank-inducing stable sort has been
disabled.
Figure 4 shows assembly graphs of the relatively small UKB

library (visualized in Figure 1) that are representative of mode
quality solutions from 1000 runs each of Anew

rand, Anew, and A1.
The Anew

rand plan in Figure 4A has the most (8) stages and
many more intermediates (red squares); resulting from the
concatenation of infrequently occurring pairs that would
normally be excluded by earlier choice of other higher ranking
pairs. Although some intermediates are quite highly reused, as
can be seen from the large number of edges extending
downward from some vertices, excess paths indicate non-
cooperative routes to the assembly of targets resulting from
generally poor intermediate choices. The more efficacious plans
seen in Figure 4B and C, while similar in size and shape to each
other, allow a distinction to be made between those produced
by Anew and A1: the most highly reused intermediate is generated
in the second and third stage, respectively. This reflects the greedy
choice made at every decision point by Anew, for the most likely
candidate for a reusable intermediate.
The impact of ranking in the improvement over random is

shown even more starkly in Figure 5, where 200 000 runs each
of Anew and Anew

rand on the larger iGEM-2008 library were
performed (taking ∼45 min per algorithm to complete) and the
results plotted as distributions of steps grouped by the number
of stages. The green peaks of Anew are tightly defined, indicating
convergence to a small space of 5 and 6 stage solutions, around
825 steps, where it is likely that the same solutions were
repeatedly obtained. As expected for a random search, the red
peaks of Anew

rand show a less-focused, Gaussian-distributed
exploration of the solution space, in terms of both steps
(∼1250) and stages (predominantly 6 or 7; very few 5 stage
solutions compared to Anew). From this experiment, we

conclude that the ranking component of Anew ensures that
considerably fewer steps are needed, and consequently, the
number of stages is reduced also.
It is important to note that no solutions with 4 stages, the

minimum for iGEM-2008, were found in any of the 400 000
runs summarized in Figure 5. The extra stages required by Anew
here are evidence that sometimes the greedy heuristic is
incapable of achieving minimal stages for certain sets of targets.
This is easily proven: given the basic parts {A, B, C, D, E} and
the targets {ABCD, BCE}, the minimal number of stages is 2,
yet the greedy strategy will always concatenate B and C into BC
in the first stage, as it is the only pair that occurs more than
once. Thereafter, a further 2 stages of binary concatenations are

Figure 4. Representative mode quality assembly graphs for UKB library of (A) Anew
rand (8, 184), (B) Anew (5, 102), and (C) A1

(5, 139).

Figure 5. Distribution of solution qualities (200 000 each) for Anew
(green) and Anew

rand (red). Stages and steps are plotted on separate axes
to indicate the proportions of solutions with different numbers of
stages, that is, for Anew, solutions with 5 stages were more common
than those with 6 stages.
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always required to assemble the targets, making a total of 3
stages. Conversely, the same heuristic, problematic for iGEM-
2008, can still produce solutions with minimal stages for other
instances, such as the Phagemid library shown in Tables 1 and 2.

Table 1 shows for 1000 runs of Amgp, A1 (our implementa-
tion of Amgp) and Anew, the best, mode and worst values of the
(stages, steps) biobjective function, for each of the libraries
originally used to validate Amgp. In each case the results
produced by A1 show strong agreement with the published
values for Amgp.

13 Therefore, we can conclude that our A1
implementation is correct and a suitable proxy for Amgp going
forward.
The fourth and fifth columns of Table 1 compare the

efficacies of A1 and Anew. For the small artificial library, the
mode value of both algorithms agrees and is also the best. The
worst value demonstrates that Anew will occasionally yield solu-
tions with excess steps resulting from specific combinations of
target compositions and the induced orderings.
For both the Phagemid and iGEM-2008 libraries, Anew

consistently yielded assembly plans with fewer steps than A1.
For iGEM-2008, however, Anew always required at least one and
at most two more than the minimum of 4 stages. Interestingly,
the best and worst plans with 6 stages had a few fewer steps
than those their equivalents with 5 stages, possibly indicative
of a pareto-front in the design space of combinatorial DNA
library assembly plans or simply an artifact of the iGEM-2008
data set.
To investigate the relationship between additional stages and

fewer steps and for direct comparison of A1 solutions with the
same number of stages as Anew, we used the extra_slack param-
eter of A1 to increase the depth (stages) to which assembly
graphs for individual targets in Amgp are allowed to grow. 1000
runs each of A1 with 1 and 2 extra slack were performed on
iGEM-2008 and the resulting distributions plotted in Figure 6
together with the results of Anew and A1 summarized in Table 1.
Each set of 1000 A1 runs required roughly 14 h of CPU time,
while 1000 runs of Anew took just 14 s.
Figure 6 shows that compared to A1 with 4 stages (0 extra

slack, purple), the right tail of the steps distribution for A1 with
5 stages (1 extra slack, cyan) is shifted to the left and the mode
too slightly, but the left tail (solutions with the fewest steps)
is the same at ∼820. However, with 2 extra slack (6 stages,
green), the distribution narrows considerably and is generally
shifted toward fewer steps, with a best of ∼815. The distribution

of steps for Anew (red) with 5 stages is similar in shape to, but
shifted left of, A1 with 1 extra slack (cyan). The steps
distribution for Anew with 6 stages is wider than for A1 with 2
extra slack (green), but its best and mode values are found to
the left of the latter’s mode. We cannot compare the distribu-
tion of Anew solutions to those of A1 without extra slack for
iGEM-2008, as there are no examples for Anew with 4 stages.
To statistically infer whether Anew produces solutions with

significantly fewer steps than A1 for the same number of stages,
we tested the null hypothesis that pairs of steps distributions
with equal stages (Figure 6, overlapping) are the same, against
the alternative hypothesis that the respective A1 steps distribu-
tion has larger values than that of Anew, using the Mann−
Whitney-Wilcoxon rank sum test (also called the Mann−
Whitney U test). The steps distribution of Anew solutions with
5 stages has a significantly different distribution than that of
A1 with 5 stages (null hypothesis rejected, and alternative
hypothesis supported, with p-value 3.0729e-145 < 0.01, U =
87422). Because Anew has a lower mode we can assert that the
solutions it produces are significantly better than A1, for
solutions with 5 stages. However, for 6 stages, we found that no
significant difference between the steps distributions (null hy-
pothesis not rejected with p-value 0.4714 > 0.01, U = 164567).
Depending on the manufacturing DNA synthesis platform, it

might be necessary to compromise either in the number of
steps or the number of stages. Both algorithms, A1 and Anew
allows for the generation of a pareto-front of nondominated
solutions from which one may choose plans with different
characteristics. Figure 7 visualizes the potential pareto-front of
stages and steps for iGEM-2008 with [1..4] extra slack. Crucially,
for very large combinatorial libraries, only Anew would be able to
produce such pareto front in a practical time.

Equivalent-Efficacy Efficiency Evaluation. If the greedy
heuristics employed by Anew can exhibit equivalent efficacyas
measured by the biobjective function of equal stages and equal
or fewer stepscompared to the much more computationally
intensive dynamic programming approach of A1 for a subset of
real-world libraries, then it may be possible to relate common
features of those particular libraries to easier instances of what
we have shown to be hard problems and gain insight into which
factors besides scale determine the difficulty of certain classes of
S-T library assembly problems.
To evaluate the equivalent-efficacy efficiency of Anew relative

to A1, we measured the number of Anew runs, up to a cutoff of
1000, required to obtain at least one assembly plan that
matched or surpassed the mode biobjective function value of
1000 A1 plans. This measurement was repeated 10 times for
each library in the experiment to obtain average values for a, the
mean number of Anew runs necessary in order to obtain the
equivalent efficacy of A1. The speedup factor of Anew over A1 is
calculated as b/(ca), where b and c are the mean running times
of A1 and Anew, respectively.
Table 2 shows the results of this evaluation on a new data set

of real-world libraries from the CADMAD project, where all
library targets are related variants of a similar construct and
potential for DNA reuse is an intentional part of the design.
Whereas, in the cases of the aggregate iGEM-2008 target set
investigated above and any samplings of the iGEM submissions
2007−2012 data set used in the following section for the
evaluation of algorithmic efficiency and scalability irrespective
of desirable simultaneous manufacture, recurrent part combi-
nations are more of a data set feature than part of an overall
design.

Table 1. Bi-objective Function Values (Stages, Steps)
by Algorithm for Each Library Used to Evaluate Amgp

library statistic Amgp A1 Anew

small artificial (k = 5,
nmax = 5)

best (3, 11) (3, 11) (3, 11)
mode (3, 11) (3, 11)
worst (3, 11) (3, 15)

Phagemid (k = 131,
nmax = 10)

best (4, 205) (4, 204) (4, 202)a

mode (4, 207) (4, 202)
worst (4, 236) (4, 208)a

iGEM-2008 (k = 395,
nmax = 14)

best (4, 820) (4, 819) (5, 810)/(6, 807)b

mode (4, 835) (5, 824)
worst (4, 855) (5, 842)/(6, 841)b

aSolutions of Phagemid by Anew with values other than (4, 202) or
(4, 208) were never observed. bBest and worst solutions that were
found with more stages but fewer steps. (Not applicable for A1 where
stages is fixed, or mode values.)
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The biobjective function values for the Phagemid library
remain as discussed in Table 1, except that we can now observe
that Anew achieves an average 385-fold speedup over A1 with at
least equivalent efficacy. The best A1 plan for the UKB library
has (5, 126) vs (5, 100) at most on average for Anew, which
achieves fewer steps every 1.3 runs on average and is 885-fold
faster. The UNOTT azurin library again shows that Anew can
yield deeper than necessary assembly graphs on occasion, such
that Anew can find the known optimal (3, 170) solution once
every 2.3 runs on average, in 1/200th of the time it takes A1.
For the UH1 library, however, Anew cannot match A1 in at

least 1000 runs. In fact, probably never, since the best, mode
and worst for Anew are all equivalent, and likely the same or very
similar collections of concatenation steps. Although superficially
similar to the ETHZ library design, the UH1 Cartesian product
is without shared linkers, which presents a problem for Anew, as
all pairs occur with equal frequency in the first stage, making

greedy concatenation of subsets of pairs across targets in this
scenario an ineffective strategy compared to the per-target
concatenation approach of A1. These poor results for Anew
on UH1 are in sharp contrast to those for UH2, where Anew
significantly outperforms A1 in terms of both efficacy and
efficiency, reducing the number of steps by almost a factor of
2 on average and requiring 1/4160th of the running time. The
difference in computational efficiency can be accounted for
largely by the greater nmax of UH2, as the runtime complexity
of A1 has been shown analytically to grow more rapidly with
the number of parts per target, than the number of targets. The
particularly high speedup factor is due to Anew on average
finding a better result than the mode of A1 within the time
required to execute just four runs, with a much shorter mean
running time.
For the ETHZ library, the best, mode, and worst for A1 are

all equal (and possibly optimal), so to match the average result
is also to match the best, which Anew does on average, every 27
runs. As it takes just 0.027 s compared to 51.549 s for one run
of A1, a 70-fold speedup is achieved. Overall, we can conclude
that Anew often matches and sometimes surpasses the quality of
assembly plans produced by A1, for several quite-distinct

Table 2. Bi-objective Function Values from A1 (1000 runs) and Anew (When A1 Mode Matched) for Real-World Libraries

Anew mean
runs ±1 s.d.

A1 mean running
time ±1 s.d. (s)

Anew mean running
time ±1 s.d. (s)

speedup factor for
equivalent efficacy

library statistic A1 Anew a b c b/(ca)

Phagemid (k = 131, nmax = 14) best (4, 204) (4, 202) 1.0 ± 2.9 × 10−4 2.965 ± 0.071 0.007 ± 4.148 × 10−4 385
mode (4, 207) (4, 202)
worst (4, 236) (4, 208)

UKB (k = 36, nmax = 21) best (5, 126) (5, 100) 1.3 ± 2.34 × 10−4 5.984 ± 0.155 0.0052 ± 3.214 × 10−4 885.2
mode (5, 139) (5, 100)
worst (5, 151) (6, 114)

UNOTT azurin (k = 125,
nmax = 7)

best (3, 170) (3, 170) 2.3 ± 6.592 × 10−3 2.725 ± 0.074 0.0056 ± 6.867 × 10−4 211.57
mode (3, 170) (3, 170)
worst (3, 170) (4, 170)

UH1 (k = 256, nmax = 6) best (3, 300) (3, 344) aborted after 1000
runs

8.213 ± 0.517 0.0093 ± 5.155 × 10−3 N/A (mode
unmatched)mode (3, 304) (3, 344)

worst (3, 304) (3, 344)
UH2 (k = 96, nmax = 33) best (6, 429) (6, 274) 3.4 ± 0.030 325.423 ± 8.278 0.023 ± 1.554 × 10−3 4161.42

mode (6, 527) (6, 285)
worst (6, 596) (7, 354)

ETHZ (k = 625, nmax = 7) best (3, 690) (3, 690) 27.0 ± 0.484 51.549 ± 2.344 0.027 ± 3.026 × 10−3 70.71
mode (3, 690) (3, 790)
worst (3, 690) (4, 790)

Figure 6. Distributions of steps for 1000 runs each of Anew, A1, and A1
with 1 and 2 extra slack on iGEM-2008.

Figure 7. Pareto-front of (mode) stages vs steps for iGEM-2008 found
by Anew and A1 with extra slack from 0 to 4.
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real-world libraries. Additionally, the time required by Anew to
generate an assembly plan of equivalent quality to A1 can be in
excess of 3 orders of magnitude smaller, and an at least an order
of magnitude speedup is achieved for all but one of the data sets
here.
In the next section, we confirm this large improvement in

efficiency, using an artificial data set to investigate the indepen-
dent effects of library size (k) and maximum target length
(nmax) on running time growth for both algorithms.
Efficiency Evaluation. The theoretically determined

runtime complexity of O(k2nmax
3) for A1 is the product of

exponents of the library variables k (number of targets) and
nmax (number of parts in largest target), making it likely that the
runtime complexity of Anew can also be expressed in terms of
these variables. Therefore, to gather empirical evidence of the
runtime complexity of Anew, we measured running times against
k and nmax independently, sampling appropriate ‘libraries’ from
the iGEM_submissions_2007−2012 target set. For the best
estimation of worst-case complexity, all targets should have n
equal to nmax. Estimates of the exponent for each variable, and
for both algorithms, were taken as the gradient of the power
trend lines on the respective log−log plots.
To measure running time response to k, an n of 10 was

chosen, yielding a population of 224 potential targets. For each

value of k from 20 to 220 in increments of 20, ten k-sized
samples were run once with both algorithms and the mean
running times calculated. The results are plotted in Figure 8.
(Standard deviations are plotted for every data point in both
Figures 8 and 9 but are visible only on the plots where both
axes are linear and not in those with logarithmic running time
y-axes.)
To measure running time response to nmax, we established a

range for n from 2 to 15 for which a minimum of 35 targets
were available. Since these targets were grouped by n and not
necessarily related or intended to be assembled together, rather
than selecting the maximum 35 targets for each n and taking
the mean running time of multiple runs on only those targets,
we decided instead to effectively generate ten different libraries
for each n by taking 10 k = 20 samples for each value of n, per-
forming a single run on each sample and taking the average
running time (i.e., each algorithm ran on all ‘libraries’). The
results are plotted in Figure 9.
Using Figures 8 and 9, we estimate an empirically deter-

mined runtime complexity for Anew of O(k0.92nmax
1.235) and for

A1 of O(k
1.9nmax

3.01), confirming its theoretical time complexity.
In the Methods section, we prove that the time complexity of
Anew is in fact O(knmax), or linear with respect to both k and
nmax, suggesting that a data set with values of nmax somewhat

Figure 8. Running time vs k, the number of targets. A1 is shown as blue diamonds, and Anew as red squares. In the left lin−lin plot A1 grows faster
than Anew which is linear despite some large variances. Separate y-axes facilitate the visualization of the trend for Anew that would otherwise appear flat
due to differences in scale: A1 is plotted on the left y-axis and Anew on the right, the values of which are 3 orders of magnitude smaller than for A1.
The central log−lin plot, allows the timings for both algorithms to be plotted on the same axes, confirming that for k = 120 and nmax = 10 (just after
the lines intersect in the lin−lin plot) Anew is at least 1000 times faster. The right log−log plot estimates the exponent of k to be ∼2 for A1 and almost
∼1 for Anew.

Figure 9. Running time vs n, the number of parts per target. The presentation is essentially identical to that of Figure 8, except that in the lin−lin
plot the scale of the right y-axis (Anew) is 2, not 3, orders of magnitude smaller than the left (A1). The interpretation differs only in that the right log−
log plot estimates the exponent of nmax to be just over 3 for A1 and 1.235 for Anew. Since all of the targets for a given data point have the same value of
n, this represents the worst case for algorithms with runtime complexity based on nmax.
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larger than 15 would yield log−log plots of empirical timings
with gradients closer to 1.
Figure 10 plots mean running times for the 4242 target

iGEM_submissions_2007−2012 data set, grouped by n, on
planes extrapolated from the asymptotic time complexities of
the algorithms. We can observe from that the growth of
running time responses to k (Figure 8) and nmax (Figure 9) for
algorithms Anew and A1 are replicated across both ranges of
values. The height separation and difference in the two-
dimensional gradient of the planes definitively demonstrates
that Anew is always faster than A1, with much improved scal-
ability: at the maximal values k = 10000 and nmax = 100, a single
run would require 10 s for Anew versus several years for A1.
Discussion. Two computational problems arise from the

need to identify reusable parts within a given set of desired
DNA sequences: identifying common building blocks and
devising a plan requiring the fewest concatenations to construct
the targets. The latter is addressed in this paper, while the
former is equivalent to rediscovering the building blocks (such
as words) of natural language texts when the original words
have all been joined together and has been identified before as
the Minimum String Cover (MSC) problem.17 In the context
of DNA libraries these words must be sufficiently long to
facilitate manipulation by PCR. Attempts at this problem show
some promising results but so far cannot effectively scale up to
lengths from a few hundred to several thousand base pairs
required for most DNA libraries.18 Combinatorial DNA library
designs, particularly in the field of synthetic biology, are commonly
derived from registries of accessible primitive (and composite)
parts that already constitute a quite reasonable MSC solution.
Combinatorial DNA library manufacturing technologies that

maximize DNA reuse can increase throughput while simulta-
neously reducing error rates and costs for both producers and
researchers. We have presented a new algorithm predicated on
the maximization of DNA reuse that devises DNA library
assembly plans preserving quality comparable to the state-of-
the-art (requiring fewer assembly steps/intermediates but
occasionally more stages) with a vast improvement in running
time and scalability.
A limitation of our algorithm, and also of A1, is that only

binary concatenation steps are considered. It is directly suited
to assembly methods capable of joining arbitrary DNA parts or
composite parts whose subparts have compatible ends. n-ary
assembly methods such as Gibson assembly,19 that concatenate

two or more parts in a single step, should be incorporated, as
these have the capacity to further reduce stages. Conversely,
restricting our algorithm to binary concatenation enabled a
meaningful comparison of solution quality with A1, the only
other previously published method.
The presented simple pairs ranking by count can be ex-

panded to more complex pair scoring functions. Taking into
account various production criteria such as biochemical ease
of assembly (fragment length, low complexity regions, etc.),
regional robustness in downstream processing or presence
in longer repeated elements (trios, quads etc.) calls for a
multifragment assembly. Other considerations such as
mounting input fragments on primers in the final assembly
process or grouping multiple binary assemblies into a single
n-ary assembly can be added as a pre- or post-process if
desirable.
Theoretically, n-ary assembly methods, allow library manu-

facturers to eschew the assembly order problem altogether,
producing all k targets in one stage and k steps; without reuse
and assuming no mixed products. Today’s methods, however,
suffer from decreasing confidence as the fragments multiply
and can cope with the assembly of only limited number of
fragments at once.
Empirical running time analysis of both algorithms showed

that Anew outperforms A1 by at least several orders of magnitude
on real-world libraries and that running times grow at a slower
rate as either the number or length of targets library parts
increases. Experiments with fixed numbers of library targets and
their sizes show that the running time of Anew scales linearly
with both the number of target parts k and the maximum
number of component parts nmax, confirming the O(knmax)
runtime complexity theoretically determined in the analysis of
the recursive formulation in Listing 2. With the same fixed-nmax
libraries, we empirically confirmed the O(k2nmax

3) theoretical
runtime complexity of A1 to be representative of its actual
performance.
In practice, DNA library manufacturers want to be able

to select from a variety of viable assembly plans, optimizing
various criteria: fewest operations/generations, lower consum-
able costs, avoiding problematic intermediates, etc. As such, it
can be more intuitive to think of speedup factors in terms of
number of library plans different assembly algorithms can
generate in an allotted time frame. The benefit of the speedup
we report is that the greedy heuristic can generate, in the case

Figure 10. 3-Dimensional log−log−log plot showing the response of running time to k (targets) and n (parts per target). Each point is the mean of
10 runs (standard deviations not shown). The lines joining the points are aligned to planes, cyan for A1 and magenta for Anew, that extrapolate the
theoretical runtime complexities to estimate the running times for larger values of k and nmax.
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of the UKB library for example, ∼800 times the number of
assembly plans as the previous state-of-the-art algorithm for the
same time cost.
Our results show that in terms of the biobjective (stages, steps)

function Anew was either as good as or better than A1 for most
of the DNA library designs used to test the algorithms. Anew is
still complemented by A1 though, as we also found that
depending on the library Anew cannot always produce solutions
with minimal stages, and that in the case of one library (UH1)
that suboptimal plans were obtained when the composition of
targets is such that there is not sufficient gradient in terms of
more frequently occurring pairs for the heuristics to have a
positive benefit on planning efficacy.
The impact of the steps versus stages trade-off depends

mainly on the DNA manufacturing platform. Where additional
stages can be quite costly in terms of time and risk of error,
biochemical concatenation steps reflect the majority of reagent
costs. In many cases, the throughput required for many steps
can only be achieved by queuing steps on multiple platform
cycles, further increasing time and operation costs. In the
future, closed manufacturing systems, where the output of one
stage can be used directly as the input of the next without a
large time lag, may prioritise reducing the number of steps to
focus more in line with maximizing DNA reuse.
We showed that the abstract computational problem

bounded-depth min-cost string production (BDMSP) underlying
efficient combinatorial DNA library assembly is NP-hard and
APX-hard. Since our new algorithm does not limit the number
of stages, but rather prejudices fewer stages by applying steps
globally, obtaining solutions with a variety of stages dependent
on input, it addresses the broader, unbounded problem (MSP),
which may also be NP-hard (an investigation we will pursue in
our future work). In its current form, our method does not
guarantee optimal solutions to the very difficult problem of
devising assembly plans. Nevertheless, through a combination
of greedy heuristics and randomization, our new algorithm
consistently produces a tight distribution of high quality plans,
and can therefore be run repeatedly to quickly generate a set of
solutions that can be filtered or augmented according to addi-
tional criteria relevant to automated manufacturing of these
large combinatorial DNA libraries. From both design and
production perspectives, it can give quick and reliable feedback,
often in real-time, as to number of necessary assembly steps and
their identities, a proxy for the effort and costs involved.

■ METHODS

Running Time Measurements. The running times
reported here were obtained with Python 2.7.3 64-bit under
Linux 3.2.0-4-amd64 with 32GB RAM using single cores of a
i7-2670 2.2 MHz processor.
Runtime Complexity Analysis Using Recurrences.

Listing 2 outlines the runtime complexity for a recursive
implementation of Anew, using the following definitions: Let T

be the set of target parts, S the set of available primitive parts,
and T′ the targets in T composed of parts in S.
Define pair as two consecutive primitive parts in T′.
N = knmax, where k is the number of target parts and nmax is

the maximum number of component parts in any target.
s(N) = sorting(N), where depending on the choice of sorting

algorithm,20 best, average and worst case parameters can vary.
Our implementation can use either Python’s built-in Timsort
(the default), with best Θ(n) vs Θ(n log n) average and worst
case performance, or a simple tailored counting sort with worst
case O(n) performance.
In terms of running time, the Master theorem20 concerns

recursive algorithms that can be represented in the form of
T(N) = aT(n/b) + f(n) where a is the number of subproblems
in the recursion, n is the size of the problem and n/b is the size
of each subproblem. According to case 3 of the theorem, if
f(n) = Θ(nc) when c > logba, then T(n) = Θ( f(n)). For Anew,
a = 1 and 1 < b ≤ 2 (the best case being 2 when half of all pairs
are steps) hence Anew always falls under case 3, as C > log[1..2] 1,
therefore T(N) = O(s(N)). In other words, the worst case
complexity of Anew is dependent on the worst case complexity
of the sorting algorithm used. Profiling showed the sorting step
to not be a bottleneck: 0.1% of running time consistently for
various libraries. Empirically, substituting Timsort with a worst-
case linear time counting sort led to marginally longer running
times. Theoretically speaking, as the space required for the
mapping data structures grows linearly Θ(n) with the size of
input, space-time considerations for the sorting algorithm of
choice may shift for linear-time/linear-space algorithms20,21

without sacrificing space efficiency. In summary, as the runtime
was found to be bound only by the sorting function, and as
linear-time sorting functions can be implemented without
increasing space requirements, it is safe to say the algorithm has
linear run time, that is, O(s(N)) = O(N).

Data Set Curation. Benchmark libraries small artificial,
Phagemid, and iGEM-2008 were reused from ref 13, for
acceptance testing of A1 as a proxy for Amgp, and efficacy com-
parison with Anew.
For equivalent-efficacy efficiency comparison, the following

libraries from the CADMAD project (FP7 STREP 265505)
were used:

• UKB has 36 targets, in several subsets, where a restriction
site flanked element is either present or missing;

• UNOTT azurin is a set of 125 targets, where 3 partial
coding sequences that putatively form stem-loop
structures with an AGGA Rsma-binding motif are
replaced by not AGGA-containing alternative back-
translations of the same coding sequence, interspersed
with constant coding regions;

• UH1 targets are the full factorial 4 × 4 × 4 × 4 Cartesian
product of 4 protein domains from 4 eukaryotic orthologs;

• UH2 follows a similar design of experiments method-
ology, but samples only 96 targets from a space of 212

Listing 2. Anew, high-level, recursive pseudo-code; worst case runtime complexity.
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(4096) sequence, the product of 12 codon changes with
2 potential codons in each position;

• ETHZ is a 5 × 5 × 1 × 5 × 1 × 5 × 1 set of 625 targets
composed of 3 genes interspersed with combinations of
promoters and ribosome binding sites.

A further data set of annual iGEM-submissions 2007−2012
provided sufficient number of composite BioBrick parts to
investigate independently the effect of k and nmax on running
times, that is, a range of n values with reasonable k, and hence a
choice of k with equal n. Table 3 shows the libraries and target
set used to evaluate assembly algorithms.
The iGEM_submissions_2007−2012 data set was scraped

from the Registry of Standard Biological Parts’ Libraries page
(http://parts.igem.org/assembly/libraries.cgi) by following the
iGEM-submissions-by-year links. We obtained the sub-
mitted part ID and list of subparts for each composite part.
Duplicate composite parts (with differing IDs) were removed
so that each part was counted only once. The complete set of
4242 unique composite targets was binned by target size n
to identify for which values of n was k sufficiently large to
separately measure running time response to ranges k and nmax
values (and ensure for all targets n = nmax). These values and
the corresponding figures are collected in Table 4.

■ APPENDIX I: COMPUTATIONAL COMPLEXITY
ANALYSIS FOR THE BOUNDED-DEPTH MIN-COST
STRING PRODUCTION (BDMSP) PROBLEM

In this appendix we analyze the computational complexity of
the Bounded-Depth Min-Cost String Production (BDMSP)
Problem. We first give a high level introduction to the
techniques used for analyzing computational complexity, we

then provide the core theorem and finally we discuss its
implications.
Essential Computational Complexity
We briefly review some basic and well-known aspects of
computational complexity. For more rigorous treatment, see for
example Garey and Johnson’s seminal book.15 Our review will
use BDMSP as a running example. BDMSP is an optimization
problem. However, it can equivalently be viewed as a decision
problem. The input to this computational problem is a set of
source strings, a set of target strings, an upper bound on the
allowable depth, and an upper bound on the allowed number of
steps. A solution to the problem is a production plan (a.k.a.
assembly plan), and a solution is feasible if indeed it generates
all target strings starting only from source strings, and it satisfies
the step and depth requirements. Given a proposed solution,
checking its feasibility is a computationally easy task (it can be
done in time polynomial in the input size), which places
BDMSP in the computational class of NP (nondeterministic
polynomial time). What we would like to determine is whether
BDMSP is in the complexity class P, namely, given an instance
of the problem, can a solution always be found efficiently (in
polynomial time), if one exists. This requires that we either
design an algorithm for BDMSP and prove that it runs in
polynomial time, or prove that no such algorithm can exist.
Current computational complexity techniques are not able to
establish either of these two options, but they can strongly
indicate that BDMSP is not in P. This is done by showing that
BDMSP is NP-hard (informally meaning that its structure is
sufficiently rich so as to encode in it every possible NP
problem), and thus if BDMSP were in P this would establish
that P = NP (which is widely believed not to be true, and
remains the most famous open question in complexity theory
for many decades). To establish that BDMSP is NP-hard it

Table 3. Libraries and Target Set Used to Evaluate Assembly Algorithms

library/target set k |targets| nmax |most parts|
minimum
stagesa experiments used in related figures/tables

small artificialb 5 5 3 A1 vs Amgp validation Table 1
A1 vs Anew efficacy

Phagemidb 131 10 4 A1 vs Amgp validation Tables 1 and 2
A1 vs Anew efficacy
A1 vs Anew equivalent-efficacy efficiency

iGEM-2008b 395 14 4 A1 vs Amgp validation Table 1; Figures 5, 6, and 7
A1 vs Anew efficacy

UKBc 36 21 5 Assembly graph visualizations Figures 1 and 4; Table 2
A1 vs Anew equivalent-efficacy efficiency

UNOTT azurinc 125 7 3 A1 vs Anew equivalent-efficacy efficiency Table 2
UH1c 256 6 3 A1 vs Anew equivalent-efficacy efficiency Table 2
UH2c 96 33 6 A1 vs Anew equivalent-efficacy efficiency Table 2
ETHZc 625 7 3 A1 vs Anew equivalent-efficacy efficiency Table 2
iGEM submissions 2007−2012d 4242 31 5 A1 vs Anew efficiency Figures 8, 9, and 10; Table 4

aCalculated as ceil(log2(nmax)).
bLibraries from.13 iGEM-2008 is somewhat arbitrary in that the targets are not all related variants. cCADMAD

libraries for Universitaẗ Bonn (UKB), University of Nottingham (UNOTT), University of Helsinki (UH), and ETH Zurich (ETHZ). dA new data
set curated from BioBrick parts submitted to the Registry of Standard Biological Parts after the annual iGEM competition, containing unique
composite parts from years 2007 to 2012 (containing 505, 885, 1133, 681, 597, 552 parts, respectively).

Table 4. Breakdown of k Values by n for All Years of iGEM_submissions_2007−2012 Combined

na 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k 788 746 462 843 296 272 129 122 224b 65 50 67 35 83
n (continued)c 16 17 18 19 20 21 22 23 24 25 26 28 29 31
k (continued)c 9 7 7 10 5 6 1 3 2 4 2 1 2 1

ak ≥ 20 and 2 ≤ nmax ≤ 15; Figure 9. bFigure 8. cFigure 10.
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suffices to show that it encodes just one other NP-hard
problem (in technical terms, one other NP-hard problem
reduces to BDMSP), and then by transitivity all NP-hard
problems reduce to BDMSP. In our proof, we reduce the well
known NP-hard problem minimum vertex cover to BDMSP.
Theorem: BDMSP is NP-hard and APX-hard. Furthermore,

this holds even when S is composed only of single characters and d =
2, and there is a total order among characters such that in every
string of T this order is respected.
Proof: By a reduction from vertex cover (VC). Let G be an

arbitrary graph of maximum degree 3, with n vertices and m ≤
3n/2 edges, in which we need to determine if there is a vertex
cover of size k. Number the vertices of G from 1 to n and direct
every edge of G from its lower numbered end point to its
higher numbered end point (thus there are no directed cycles).
Consider a finite alphabet of size m + 2n. The set of these
characters will serve as S for BDMSP. Label each vertex by two
distinct characters and each edge by one distinct character.
Every directed edge (u,v) gives rise to three strings in T as
follows. Suppose that u is labelled by AB, that v is labelled by
CD, and that the edge (u,v) is labelled by E. Then, the
corresponding three target strings are ABE, BEC, and ECD,
shown in Figure 11. The total number of target strings is 3m.
We limit the depth d of the production process to be 2.
As every target string contains three characters, at least two

of them need to be concatenated already in the first stage, as
otherwise the depth will exceed 2. Hence, among the three
strings ABE, BEC, and ECD discussed above, we must perform
at least two concatenations in the first stage: one a vertex
concatenation such as AB, and the other an edge concatenation
such as EC. The edge concatenation (EC) must involve E and
hence does not serve target strings of any edge other than (u,v).
The vertex concatenation (AB) may serve other target strings as
well.
In the second stage, at least two concatenation operations are

needed per edge (concatenating AB with EC gives ABEC that
contains both ABE and BEC, and concatenating EC with D
gives ECD).
VC of Size k Implies BDMSP of cost 3m + k. Given a vertex

cover VC of size k, perform k vertex concatenations in the first
stage, each corresponding to one vertex from the vertex cover
VC. In addition, for every directed edge perform one edge
concatenation. In the example above, if u is in the vertex cover
generate AB and EC, otherwise generate CD and BE. The total

number of steps is m + k (in the first stage) plus 2m (in the
second stage), for a total of 3m + k.

BDMSP of Cost 3m + k Implies VC of Size k. Given a
solution to the BDMSP instance of depth two with 3m + k
steps, every character that labels an edge appears in at least one
intermediate string (because it is a middle character in some
target string). Without loss of generality, we may assume that it
is not contained in two intermediate strings. (In the example
above, if we have the intermediate strings BE and EC, they can
be replaced by BE and CD without increasing the cost of the
solution.) Hence, at least one of the end points of the edge
must contribute an intermediate string as well. This means that
the set of intermediate strings that do not contain edge labels
corresponds to a vertex cover. As stage two requires at least 2m
steps and stage one has at least m edge concatenations, the
vertex cover is of size at most 3m + k − 3m = k.
Both NP-hardness14 and APX-hardness15 of BDMSP follows

from that of vertex cover in bounded degree graphs.
Figure 12A shows an example of how the solution to the

equivalent VC problem solves MSP, and vice versa, for the
library T = {ABE, BEC, ECD, ABH, BHF, HFG} over the set of
primitive parts S = {A, B, C, D, E, F, G, H}. The solution to VC
for the given graph is AB, resulting in choosing the intermediate
part AB for the node in the vertex cover and EC HF for the
edges.
We remark that if depth is not limited, that is, the problem is

unbounded, then the target set in instances of the proof can be
generated in n + 2m < 3m steps. In stage one, do all n vertex
concatenations. In stage two, do exactly one concatenation per
directed edge (e.g., produce ABE but not ECD), producing one
of the target strings associated with the edge. In stage three,
using the previously produced target string as an intermediate
string, do the other concatenation for every directed edge,
creating the two remaining target strings in parallel. For
example, concatenate ABE and CD, producing ABECD that
contains both BEC and ECD (Proving the NP-hardness of MSP
is not trivial and exceeds the scope of our efforts here, which is
concerned with practical algorithms for very large combinatorial
DNA assembly plans).

Implication
The consequences of NP-hardness are that there is no
polynomial time algorithm that solves BDMSP optimally on
every input instance (unless P = NP). This does not imply that
there are no efficient algorithms that solve some of the
instances of BDMSP correctly, and perhaps even all those

Figure 11. Every edge describes three composite parts of length 3 {ABE, BEC, ECD} shown in red.

Figure 12. Bidirectional VC to BDMSP reductions: (A) graph of targets {ABE, BEC, ECD, ABH, BHF, HFG} emphasizing the minimal vertex cover
node, red; (B) optimal assembly graph for targets emphasizing the intermediate nodes that result from the minimal vertex cover, red nodes.
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instances that one would encounter in practice. Computational
complexity theory currently does not provide the tools for
addressing such questions. Another question one may ask is
whether there is an efficient algorithm that solves BDMSP
almost optimally (rather than exactly optimally) on all
instances. These types of questions are addressed in computa-
tional complexity theory through the notion of APX-hardness
(APX stands for approximation). Minimum vertex cover is
known to be APX-hard, meaning that there is a limit to how
well it can be approximated by polynomial time algorithms,
unless P = NP. Our reduction from minimum vertex cover to
BDMSP is an approximation preserving reduction, implying
that BDMSP is also APX-hard. This means that there is some
constant r such that unless P = NP, there is no polynomial time
algorithm that finds solutions for BDMSP that are approx-
imately optimal, not even if one allows a multiplicative
slackness factor of r in the number of production steps.
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